Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes.

نویسندگان

  • K M Heinemeier
  • D Skovgaard
  • M L Bayer
  • K Qvortrup
  • A Kjaer
  • M Kjaer
  • S P Magnusson
  • M Kongsgaard
چکیده

Overuse Achilles tendinopathy is a common and challenging problem in sports medicine. Little is known about the etiology of this disorder, and the development of a good animal model for overuse tendinopathy is essential for advancing insight into the disease mechanisms. Our aim was to test a previously proposed rat model for Achilles tendon overuse. Ten adult male Sprague-Dawley rats ran on a treadmill with 10° incline, 1 h/day, 5 days/wk (17-20 m/min) for 12 wk and were compared with 12 control rats. Histological, mechanical, and gene-expression changes were measured on the Achilles tendons after the intervention, and local tendon glucose-uptake was measured before and after the intervention with positron emission tomography. No differences were detected between runners and controls in tissue histology or in glucose uptake, indicating that tendon pathology was not induced. Greater tendon tissue modulus (P < 0.005) and failure stress/body weight (P < 0.02) in runners compared with controls further supported that tendons successfully adapted to uphill running. Several genes of interest were regulated after 12 wk of running. Expression of collagen III and insulin-like growth factor I was increased, while collagen I was unchanged, and decreases were seen in noncollagen matrix components (fibromodulin and biglycan), matrix degrading enzymes, transforming growth factor-β1, and connective tissue growth factor. In conclusion, the tested model could not be validated as a model for Achilles tendinopathy, as the rats were able to adapt to 12 wk of uphill running without any signs of tendinopathy. Improved mechanical properties were observed, as well as changes in gene-expression that were distinctly different from what is seen in tendinopathy and in response to short-term tendon loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uphill treadmill running does not induce histopathological changes in the rat Achilles tendon

BACKGROUND The purpose of this study was to investigate whether uphill treadmill running in rats created histopathological changes within the Achilles tendon consistent with Achilles tendinosis in humans. METHODS Twenty-six mature rats selectively bred for high-capacity running were divided into run and cage control groups. Run group rats ran on a treadmill at a 15° incline for a maximum dura...

متن کامل

Does achilles tendon cross sectional area differ after downhill, level and uphill running in trained runners?

In this study we examined how hill running affects the Achilles tendon, a common location for injuries in runners. Twenty females ran for 10 min on each of three randomly ordered grades (-6%, 0 and +6%) at speeds selected to match the metabolic rates. Achilles tendon (AT) cross-sectional area (CSA) was imaged using Doppler ultrasound and peak vertical forces were analyzed using an instrumented ...

متن کامل

Type 2 diabetes impairs tendon repair after injury in a rat model.

Type 2 diabetes adversely affects the properties of native connective tissue. The underlying mechanisms, however, by which diabetes alters connective tissue metabolism, especially tendon, are poorly defined. The aim of this study was to determine the effect of type 2 diabetes on the mechanical, histological, and molecular properties of the intact and healing Achilles tendon. The right Achilles ...

متن کامل

The role of elastic energy storage and recovery in downhill and uphill running.

In level running, humans and other animals store and recover elastic energy during each step. What role does elastic energy play during downhill and uphill running? We measured the fluctuations of the mechanical energy of the center of mass (CoM) of 15 human participants running at 3 m s(-1) on the level, downhill and uphill on a force-measuring treadmill mounted at 3, 6 and 9 deg. In level run...

متن کامل

Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue.

Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collagen synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2012